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Abstract. The mathematical modeling and numerical simulation of real problems in engineering has a fundamental importance. 
However, the search for accurate and viable solutions constitutes in a great challenge. 
The goal of this paper is to present the Immersed Boundary methodology for modeling and simulating flows over complex three-
dimensional geometries, and also characterize the generation of wingtip vortices. This methodology is being developed in the 
Laboratory of Heat and Mass Transfer and Fluid Dynamics (LTCM). 
The Immersed Boundary method uses two independent domains in the solution of the flows over complex geometries: An Eulerian 
domain, which is discretized using Finite Volume Method over a non-uniform mesh to integrate the Navier-Stokes equations, and a 
second-order approximation for time and space derivatives. The Lagrangian domain is represented by a superficial unstructured 
mesh, composed by triangles. 
The in-house parallel code runs on a Beowulf-class cluster, a viable and reliable alternative to solve problems that demand very 
large computational resources. Three-dimensional flow over airfoils NACA-0012 were simulated aiming to accurately study wingtip 
vortices. The results present a good agreement with literature, and it is possible to understand the generation and development of 
the vortices. 
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1. Introduction  
 

When an aircraft wing generates lift, it also produces horizontal, tornado-like vortices that create a potential wake-
vortex hazard problem for other aircraft trailing. The powerful, high-velocity airflows contained in the wake behind the 
generating aircraft are long-lived, invisible, and a serious threat to aircraft encountering the system, especially small 
aviation aircraft. Thus the understanding of such phenomenon is fundamental.  

In present work the Immersed Boundary method is used to simulate the conditions of generation and decay of those 
wingtip vortices. An in-house parallel code running on a Beowulf-class cluster is used. 

In the Immersed Boundary (IB) methods, the presence of a solid or a gaseous interface inside a flow can be 
simulated by adding a source term into the Navier-Stokes equations, acting as a fluid body force. The way that this 
force is evaluated differentiates the methodologies among them. Furthermore, an important characteristic presented by 
the Immersed Boundary methodologies is that the immersed obstacle can be represented by a Lagrangian mesh while 
the flow domain can be discretized by an Eulerian grid such as Cartesian or cylindrical. There are, also, an interpolation 
function that promotes the information transfer from one domain to another. This domain independence allows one to 
promote the immersed body a displacement and/or a deformation relative to the flow grid. 

The development of the Immersed Boundary method was credited to Charles Peskin and his collaborators, aiming 
to simulate the blood flow through cardiac valves. Accordingly to Peskin's work (Peskin, 1977), the source of the 
additional force term was due to the elastic boundary deformation rate, in which their constitutive points were tied by 
elastic membranes 

More recently, Lima e Silva (Lima e Silva et al, 2003) proposed a model that evaluates the force field by the 
momentum equation based on a three points scheme, similar to Mohd-Yusof's (Mohd-Yusof's,1997) work, but using 
more simplified interpolation schemes that requires less computing resources. Since the model employs momentum 
equation and model the no-slip condition on the geometry wall in an indirect manner, the model has been called Virtual 
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Physical Model (VPM) (Lima e Silva et al, 2003). This current work proposal is to present an extension to three-
dimensional domains of the VPM (Campregher, 2005) and apply it to the flow around a NACA- 0012 airfoil. 
 
2. Mathematical and numerical modeling 
 

The Immersed Boundary method uses two distinct domains to evaluate a flow over a complex geometry. An 
Eulerian domain is used to describe the behavior of the mean flow and covers the entire flow domain. For its turn, the 
Lagrangian domain is used to represent the interface fluid/fluid or fluid/solid. 

This is one of the great advantage attributed to Immersed Boundary methods since it is possible to simulate flow 
around complex geometries using a more simplified Eulerian formulation for the fluid and a Lagrangian more versatile 
and simple grid for the interface fluid/solid. The coupling between Eulerian and the Lagrangian domains is done by  
Virtual Physical Model (Lima e Silva et al 2003). 

In this work, Cartesian meshes were used to discretize the flow domain, configuring a simple and easy 
implementation, and at low computational cost. The following describes both domains in more details. 

 
2.1. The Eulerian Domain 
 

The domain was discretized by Finite Volume method over a structured non-uniform mesh. The flow is considered 
incompressible and isothermal. The integral form of the Navier-Stokes for such assumptions becomes: 

 

���� ΩΩ
Ω+⋅∇Γ=⋅+Ω

∂
∂

dqdSndSnvd
t SS φφρφρφ ,        (1) 

 

where φ is a property being transported, φq  is the term of generation or destruction of φ , and φΓ is the diffusivity of 
φ . 

The time derivative was approximated by a second-order three-time level (Ferziger & Peric, 2002), and the spatial 
derivatives by the Central-Difference Scheme. 

The pressure-velocity coupling was done by the SIMPLEC method (Van Doormal e Raithby, 1984), with no 
relaxation in the velocity components equation. A co-located arrangement of variables was employed, and the Rhie-
Chow (Rhie-Chow, 1983) interpolation method was used to avoid numerical oscillation due to pressure checkerboard 
fields. 

The linear system originated from the velocity components discretization was solved by the SOR method. The SIP 
algorithm was used to solve the linear system generated by the discretization of the pressure correction equation. 

The time and space integration of equation (1) over an elementary volume, shown in figure (1), after some 
mathematical arrangements leads to the following equation : 

 

( ) ( )

( )

zyxqyx
zz

zx
yy

zy
xx

yxuu

zxuuzyuuzyx
t

n

bt

n

sn

n

we

n
bbbttt

n
sssnnn

n
wwweee

n
p

n
p

n
p

∆∆∆+∆∆�
�

�
�
�

�
�
	



�
�



∂
∂Γ−�

	



�
�



∂
∂Γ+∆∆

�
�
�

�

�
�
�

�
��
	



��
�



∂
∂Γ−��

	



��
�



∂
∂Γ

+∆∆�
�

�
�
�

�
�
	



�
�



∂
∂Γ−�

	



�
�



∂
∂Γ=∆∆−

+∆∆−+∆∆−+∆∆∆
�
�

	




�
�

�



∆
+− −−

φ
φφφφ

φφ

φφφφ

φφφρφρ

φρφρφρφρ
φφφ

2

43 21

,      (2) 

The first term of the left-hand side of the equation (2) represents the discretization of the transient term by the 
three-time level scheme (Muzaferija and Peric, 1997). This scheme is a second order accurate in time. 

 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec. 5-8, 2006 – Paper CIT06-0395 
 

 
 

Figure 1: Elementary control volume, with variable φ placed on centroid. 
 
2.2. The Lagrangian domain 
 

The Lagrangian approach for analyzing the movement of a particle constitutes of placing a system of coordinates at 
the particle and follow it individually. In other words, the system of coordinates moves through the flow following the 
particle. Thus, at each time step the particle keeps its own system of coordinates relatively to a global system of 
coordinates. 

In the Virtual Physical model the geometry to be simulated is characterized by a Lagrangian set of points (see. Fig. 
(2)). This methodology permits to take advantage of the Lagrangian approximations like the ability to simulate moving 
bodies by just applying translation operations to the set of points. 

 

 
 

Figure 2: The surface of an airfoil NACA-0012 characterized by Lagrangian points. 
 
The main characteristic of Immersed Boundary method is to simulate the presence of a fluid/solid or fluid/fluid 

interface inside a flow by adding a source term of force f
�

 to the Navier-Stokes equations. In Fig. (3) an arbitrary 

Lagrangian point k  is shown with coordinates kx
�

, as well as an elementary volume of fluid with coordinates x
�

. The 

evaluation of f
�

 differentiates the IB methods among them.  
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Figure 3: Schematic drawing of an arbitrary point k  over a surface, placed on kx
�

, and a element of fluid positioned 
in x
�

 
 
In the Virtual Physical Model, the Lagrangian force is obtained from a balance of momentum over a particle k , 

placed at kx
�

. This particle also has properties pressure kp  and velocity kV
�

. Thus, the force can be evaluated as: 
 

( ) ( ) kkkk
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           (3) 

 
The Eq. (3) can be interpreted as the necessary force so that a particle of fluid immediately adjacent to the 

Lagrangian point k  reaches the velocity of this point, imposing a non-slip condition between the fluid and the 
immersed body. 

Each term of the Eq. (3) has a particular meaning. The first term (the transient term) is responsible by the 

acceleration force ( accF
�

). The other terms, of spatial derivatives, are known as the advective term, the diffusive term 

and the pressure gradient term, respectively. These terms are responsible for inertial forces ( inertF
�

), viscous forces 

( viscF
�

), and pressure forces ( pressF
�

). More details about this model and about each term evaluation can be found in Lima 
e Silva et al (Lima e Silva et al, 2003), and Campregher (2005). 

The properties of the flow in the Eulerian mesh have to be interpolated to the Lagrangian mesh to calculate the 
Lagrangian forces. Once evaluated, the Lagrangian forces must be transferred back to the Eulerian domain. The 
connection  between Lagrangian and Eulerian domains is promoted by the force distribution procedure.  

 
2.2.1. The Virtual Physical Model 

 
The discretization of Eq (3) is done by constructing a three-dimensional reference axis, with origin placed at the 

point k , as can be seen in the Fig (4). A Lagrangian polynomial is then used to obtain the space derivatives along each 
coordinate direction. Let m be a number of points employed to construct a polynomial interpolation of order m-1. Thus, 
the value of a property φ  along i direction, at any point p, is given by: 
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Substituting the m points, according to the stencil on Fig (4), the φ  property value along the x axis (where k , 1k  

and 2k  points lay) can obtained as: 
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Deriving Eq (6) to x direction one has: 
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and the second derivative results: 
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From the equations above, it is possible to obtain every spatial derivative needed in Eq (3), just substituting the 

point p and the aimed variable φ . 
 

 
 

Figure 4: Position of the Lagrangian point kx
�

 
 

A detailed view of a triangular element can be obtained in the Fig (5). The element sides are formed by line 

segments 1S , 2S , and 3S , between the vertex points 1P , 2P and 3P . Thus, one has 121 PPS = , 232 PPS =  and 

133 PPS = . 

The kA∆  is the triangular element surface area, which can be evaluated as: 
 

( )( )( )321 SSSSSSSAk −−−=∆             (9) 
 

where ( )( )32121 SSSS ++= . The kS∆ is the average length of the triangle sides. It worth noting that each of those 
geometric properties are associated to a Lagrangian point k. 
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Figure 5: Detailed view of a triangular element 
 

2.2.2. The distribution procedure 
 

The Lagrangian force term F
�

, calculated at a Lagrangian point (denoted by kΩ ) is then distributed to Eulerian 
domain by means of the Dirac Delta Function. In a N-dimensional this function is defined as: 
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Applying the Eq. (10) for a volume V of the Lagrangian domain, 
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The δ  function has the following property: 
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where Ω∈V .This function acts as the core of a transformed integral (centered in kx
�

), which promotes the transposition 
between the Lagrangian and Eulerian domains (Griffith and Peskin, 2005). 

In the Virtual Physical Model for three-dimensional domains, the Lagrangian force field (Fi,k) is distributed over the 
Eulerian mesh using Eq (13). 

 

� ∆∆= kkikii SADFf , .           (13) 

 

The distribution function iD  is evaluated as: 
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where the ϕ  function is defined as: 
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The Distribution function is divided by a volume unit, that cancel out by multiplying for a characteristic area ( kA∆ ) 

and for a characteristic length ( kS∆ ). Thus, it remains the force density that is integrated over the volume Ω . 

The interface solid/fluid is managed by an indicator function iI , built from: 
 

ii GI ∇=∇2 ,             (17) 
 

where the G function is defined as: 
 

� ∆= kkii AnDG
�

,            (18) 

 

and the kn
�

 is the normal vector on the Lagrangian point k. 
After the discretization of the Eq. (17), the algebraic equation system is evaluated by the MSI algorithm (Schneider 

and Zedan, 1981), a variation of the SIP procedure. By analyzing the Eq. (18), one can see that if the geometry is 
inserted into a non-uniform grid region, the interfacial region may become deformed, i.e., the geometry shell shape 
would be misrepresented. 

Briefly describing, the force field evaluation procedure in the Virtual Physical Model can be stated as: 
(1) With the flow field solved, the velocity components and the pressure are transferred, using the interpolation 

function given by Eq. (18), to the nearest Lagrangian points (k, k1...k6) depicted in Fig. (4); 

(2) Once having kiu , and kip , , evaluates kiF , by Eq. (3); 
(3) Calculates the force field components, due to each Lagrangian point k, via Eq. (13); 
(4) Advances in time; 
(5) The force field are inserted into the source-term of Eq. (1); 
(6) A new flow field is obtained and the procedure re-starts. 
 

3. Parallel Programming Approach  
 
One of the greatest problems involving complex physical problems simulations is the computational resources 

available. Thus, an in-house Beowulf cluster turns out to be very a viable solution due to its comparatively low cost 
when comparing to the supercomputers. Moreover, such clusters have good scalability, that is, it is possible to increase 
the cluster resource by adding more processors anytime. The cheaper assembly is ensured by employing on-the-shelf 
hardware and, mainly, due to the open source software, freely downloaded from internet. 

Any group of ordinary machines connected by a local network may be enough to constitute a Beowulf cluster. This 
work ran on a homogeneous cluster of five machines with the following configurations: master node has an Intel® 
865PERL mother-board, a Pentium4® 2.8GHz processor, with 1548 MB DDR RAM, 80 GB IDE hard drive, and a 
Radeon® 9200 128MB DDR AGP8x video card. The slave nodes have the same configuration, except by the video 
card, which is a Geforce® 64MB AGP4x. The postprocessing tasks are done by master node. All machines are 
connected by a Gigabit network via 3COM® 16 port switch.  

The software uses for data interchange among processors the MPI (Message Passage Interface) library, more 
specifically a MPICH (MPI CHameleon). The MPI was chosen, mainly, due to its better performance on clusters of 
homogeneous machines. Furthermore, the MPI library has more than 120 functions permitting to write very efficient 
codes and, also, it is constantly updated by the MPI community. 

The computational domain was split in 3 sub-domains with the Lagrangian mesh entirely in one of them, since it is 
not parallelized yet. Furthermore, as described above, it is imperative to use uniform spacing grids within and over the 
immersed geometry region. The other regions of the Eulerian domain was discretized in a non-uniform mesh to save 
computational resources. The way the problem was partitioned can be seen in fig. (6). 
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Figure 6: Eulerian sub-domains used in the simulations. 
 

4. Results and discussion  
 

Craft (Craft et al, 2006) studied the formation and decay of wingtip vortices based on experimental results obtained 
by Chow (Chow et al, 1997). Those papers were used to qualitatively validate the present work. 

The numerical Eulerian mesh used for every simulation is detailed in the Fig (7). The numerical domain has 
dimensions length (X) = 0.88m, width (Y) = 0.68 m and height (Z) = 0.336 m. Such domain was discretized by, 
148x268x76 grids in X, Y and Z axis, respectively.  

The NACA 0012 airfoil is represented by a triangular element mesh, as seen in Fig. (8), composed by 15446 nodes 
and 30888 elements. Again, the Immersed Boundary methodology requires only the discretization of the surface that 

represents the fluid/solid interface, i.e. the body shell. The airfoil is centered at ( ccc zyx ,, ) = (0.28, 0.34, 0.165) m, 
having a chord c=0.04m and a width of 4c. For every simulation the attack angle α = 10º and the Reynolds number, 
based on chord, is Re = 10000. 

The boundary condition for velocity components on the Eulerian domain side walls were set as free-slip conditions, 

the inflow at x=0 m had a flat profile with values of IUu =  (inlet velocity), smwv /0== . The outflow was set of 
Neumann conditions. 

 

 
 

Figure 7: Eulerian and Lagrangian domain. 
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Figure 8: Airfoil discretized using a triangular elements mesh. 
 

Computations are here reported as the flow over a NACA 0012 airfoil with a square wing tip. The generation and 
the evolution on time of the trailing vortices are well shown for a low Reynolds number (Re = 10000). 

In Figs (9a-h) it is possible to see the formation and evolution of the streamlines over the NACA 0012 airfoil of Fig 
(8). Since the overall flow pattern is symmetric at this flow regime, only one side of the airfoil is shown. 

 

 
(a)      (b) 

 
(c)      (d) 
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(e)      (f) 

 
(g) (h) 

Figure 9: Evolution of streamlines over an NACA 0012 airfoil on times: (a) t=0.01s, (b) t=0.1s (c) t=0.5s (d) 
t=1.0s (e) t=1.5s (f) t=3.0s (g) t=5.0s (h) t=10.0s. 

 
The value of the L2 norm was about 10-3, which is acceptable, once that the code has a second order in time-space 

accuracy. 
Figure (10) shows three perpendicular planes to the airfoil. It’s notable the influence of the tip of wing on the flow. 

We see that the flow is symmetric, and at the airfoil middle a Kelvin-Helmholtz like instability is formed and it is being 
transported. Figure (11) and Fig (12), show the top view and the back view of Fig (10). At Fig (12) the helicoidal 
wingtip vortices are clearly shown.  

 

 
 

Figure 10: Perpendicular planes at t=10.0s. 
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Figure 11: Top view of Fig. 10 
 

 
 

Figure 12: Back view of Fig 10. 
 

In Figs (13a-f), the vorticity field is shown over six transversal cuts. It’s possible to see the formation and evolution 
of the vertical structures over the NACA 0012 airfoil. 

 

 
(a)               (b) 

 
(c)               (d) 
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(e) (f) 

 
Figure 13: Evolution of the vorticity field behind the airfoil in t=10s at positions: (a) x=0.3m, (b) x=0.34m (c) 

x=0.4m (d) x=0.45m (e) x=0.5m (f) x=0.6m  
 

In Fig (13) it is possible to note that the main structure that remains in the flow are the vortices generated by the tip 
of the airfoil. From this result, it can be said that those structures are really matter of concern, when studying large 
aircrafts. 
 
5. Conclusion  
 

In this work, which represents an extension of Campregher's work (Campregher, 2005), the authors intended to 
present more applications to Virtual Physical Method. The flow around a single airfoil NACA 0012 at Re = 10000 was 
chosen as a test case to identify and characterize the generation and the decay of wingtip vortices. It was done 
successfully. 

The Immersed Boundary Method have shown great capability in dealing with complexes geometries and/or 
moving bodies, once the Eulerian mesh is a Cartesian mesh, very simple to be created, and there are no further 
difficulties in generating the Lagrangian mesh, which is a advantage if compared with other methodologies of studying 
Fluid-Structure Interaction. 

The results present a good agreement with literature (Chow et al, 1994 and Craft et al, 2006), and also, it is 
possible to understand the generation and development of the vortices. Although, further investigation about the 
influence of the width of the airfoil in the flow, as well as development for high Reynolds number have to be done.  
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